Correcting motion in multiplanar cardiac magnetic resonance images

نویسندگان

  • Min Wan
  • Wei Huang
  • Jun-Mei Zhang
  • Xiaodan Zhao
  • John Carson Allen
  • Ru San Tan
  • Xiaofeng Wan
  • Liang Zhong
چکیده

BACKGROUND Misalignment in cardiac magnetic resonance (CMR) images can adversely affect three-dimensional left ventricle modelling and downstream quantitative analysis. Currently, there are two types of approaches for dealing with realignment and motion distortion problems, one image based and the other geometry based. Image-based approaches are limited by the inherent non-homogeneity and anisotropy of CMR images. Geometry-based approaches rely on idealized models and over-simplified assumptions. This study was motivated by the need for a robust and effective approach for correcting motion related distortions due to misalignment in CMR images. METHODS A cine cardiac magnetic resonance image sequence was acquired using our routine clinical imaging protocol. The left ventricular endocardium was delineated manually with software assistance on all long and short-axis images. Long and short-axis contours were projected onto a patient-based coordinate system and then realigned using iterative registration. The realigned contour points were used to reconstruct the shape of the left ventricle for quantitative validation. RESULTS The method was tested on five myocardial infarction patients whose images showed substantial misalignment. Realignment time was about 16 seconds per case, using a 2.5 GHz CPU desktop with obvious elimination of the distortion in the reconstructed model. Using the long-axis contour as a reference in evaluating the reconstructed models, it was apparent that the models with realigned contours had better accuracy than the non-realigned ones. CONCLUSION This study presents a novel, geometry-based method for correcting motion distortions in CMR images. The method incorporates (1) manual delineation, (2) registration based on a generalized, iterative closest point algorithm, and (3) reconstruction of the shape of the left ventricle for quantitative validation. The effectiveness of our approach is corroborated both visually and by quantitative assessment. We envision the use of our method in current clinical practice as a means of improving accuracy in the evaluation of cardiac function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic resonance imaging of feline eye

The purpose of this study was to investigate magnetic resonance imaging (MRI) of the normal feline eyeand optic nerves using T1-weighted and T2-weighted images. A total of 6 healthy female domestic short haircats age 2-2.5 years and weighing 3.2 ± 0.4 kg were selected. Magnetic resonance imaging data werecollected using GEMSOW (Philips) at a magnetic field strength of 1.5 T. Dorsal, sagittal, a...

متن کامل

Nonlinear phase correction for navigated diffusion imaging.

Motion during diffusion-weighted imaging (DWI) introduces phase errors that can cause significant artifacts in brain images. One method of correcting these errors uses additional navigator data to measure the phase corruptions. Standard navigator methods correct for rigid-body motion but cannot correct for nonrigid deformations of the brain related to the cardiac cycle. This work derives a gene...

متن کامل

Motion compensated cine CMR of the fetal heart using radial undersampling and compressed sensing

BACKGROUND To develop and evaluate a reconstruction framework for high resolution time-resolved CMR of the fetal heart in the presence of motion. METHODS Data were acquired using a golden angle radial trajectory in seven fetal subjects and reconstructed as real-time images to detect fetal movement. Data acquired during through-plane motion were discarded whereas in-plane motion was corrected....

متن کامل

Correcting Motion Artifacts in Magnetic Resonance Images

Motion of the patient during magnetic resonance imaging (MRI) introduces artifacts that can severely degrade the images. A method is proposed to correct for artifacts caused by translational motion, using only information contained in the MRI data. Initial simulation results show the algorithm to be effective in the presence of realistic noise levels. The method is suitable for routine clinical...

متن کامل

Apical hypertrophic cardiomyopathy: diagnosed by cardiac magnetic resonance imaging.

A 75-year-old white man without cardiac symptoms was referred to our cardiology clinic with a long history of abnormal electrocardiographic findings. Cardiac risk factors included hyperlipidemia and a family history of heart disease. Upon physical examination, his heart rate was 49 beats/min and his blood pressure was 106/70 mmHg. No extra heart sounds or murmurs were heard, even after provocat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2016